NAG Toolbox for MATLAB

s14aa

1 Purpose

s14aa returns the value of the Gamma function $\Gamma(x)$, via the function name.

2 Syntax

[result, ifail] =
$$s14aa(x)$$

3 Description

s14aa evaluates an approximation to the Gamma function $\Gamma(x)$. The function is based on the Chebyshev expansion:

$$\Gamma(1+u) = \sum_{r=0}^{\prime} a_r T_r(t),$$
 where $0 \le u < 1, t = 2u - 1,$

and uses the property $\Gamma(1+x)=x\Gamma(x)$. If x=N+1+u where N is integral and $0 \le u < 1$ then it follows that:

for
$$N > 0$$
, $\Gamma(x) = (x - 1)(x - 2) \cdots (x - N)\Gamma(1 + u)$,

for
$$N = 0$$
, $\Gamma(x) = \Gamma(1 + u)$,

for
$$N < 0$$
, $\Gamma(x) = \frac{\Gamma(1+u)}{x(x+1)(x+2)\cdots(x-N-1)}$.

There are four possible failures for this function:

- (i) if x is too large, there is a danger of overflow since $\Gamma(x)$ could become too large to be represented in the machine;
- (ii) if x is too large and negative, there is a danger of underflow;
- (iii) if x is equal to a negative integer, $\Gamma(x)$ would overflow since it has poles at such points;
- (iv) if x is too near zero, there is again the danger of overflow on some machines. For small x, $\Gamma(x) \simeq \frac{1}{x}$, and on some machines there exists a range of nonzero but small values of x for which 1/x is larger than the greatest representable value.

4 References

Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions (3rd Edition) Dover Publications

5 Parameters

5.1 Compulsory Input Parameters

1: x - double scalar

The argument x of the function.

Constraint: x must not be zero or a negative integer.

5.2 Optional Input Parameters

None.

[NP3663/21] s14aa.1

s14aa NAG Toolbox Manual

5.3 Input Parameters Omitted from the MATLAB Interface

None.

5.4 Output Parameters

1: result – double scalar

The result of the function.

2: ifail – int32 scalar

0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1

The argument is too large. On soft failure the function returns the approximate value of $\Gamma(x)$ at the nearest valid argument.

ifail = 2

The argument is too large and negative. On soft failure the function returns zero.

ifail = 3

The argument is too close to zero. On soft failure the function returns the approximate value of $\Gamma(x)$ at the nearest valid argument.

ifail = 4

The argument is a negative integer, at which value $\Gamma(x)$ is infinite. On soft failure the function returns a large positive value.

7 Accuracy

Let δ and ϵ be the relative errors in the argument and the result respectively. If δ is somewhat larger than the *machine precision* (i.e., is due to data errors etc.), then ϵ and δ are approximately related by:

$$\epsilon \simeq |x\Psi(x)|\delta$$

(provided ϵ is also greater than the representation error). Here $\Psi(x)$ is the digamma function $\frac{\Gamma'(x)}{\Gamma(x)}$. Figure 1 shows the behaviour of the error amplification factor $|x\Psi(x)|$.

If δ is of the same order as *machine precision*, then rounding errors could make ϵ slightly larger than the above relation predicts.

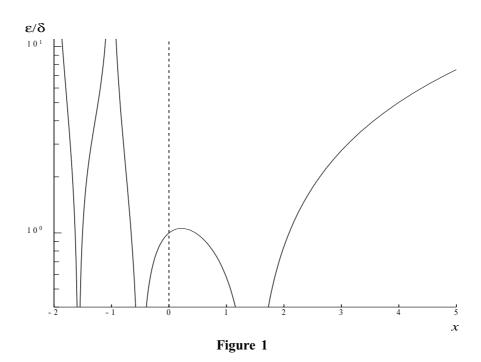
There is clearly a severe, but unavoidable, loss of accuracy for arguments close to the poles of $\Gamma(x)$ at negative integers. However relative accuracy is preserved near the pole at x=0 right up to the point of failure arising from the danger of overflow.

Also accuracy will necessarily be lost as x becomes large since in this region

$$\epsilon \simeq \delta x \ln x$$
.

However since $\Gamma(x)$ increases rapidly with x, the function must fail due to the danger of overflow before this loss of accuracy is too great. (For example, for x = 20, the amplification factor $\simeq 60$.)

[NP3663/21]



8 Further Comments

None.

9 Example

[NP3663/21] s14aa.3 (last)